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Topology concerns the properties of objects/spaces that are preserved un-
der continuous deformations, such as stretching, twisting, crumpling and
bending, but not tearing or gluing.

Also concerns the way that smaller objects can sit inside of bigger ones.

Topology
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We call a continuous, closed, embedded loop in the plane a Jordan curve,
where embedded means no self-intersections.
Jordan curves.

Jordan curves
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Early on, it was observed you can often find four points on a given Jordan
curve that form the vertices of a square in the plane. That is, many Jordan
curves have inscribed squares.Jordan curves.

Inscribed squares
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In 1911, Otto Toeplitz posed the following question:

The Square Peg Problem
Does every continuous Jordan curve in the plane contain four points at
the vertices of a square?

Why squares?
• Three points correspond to inscribed triangles, and these are
ubiquitous: Given any triangle ∆ and any Jordan curve γ ⊂ R2,
there is an inscribed triangle on γ that is similar to ∆.

• Five points correspond to inscribed pentagons, and these generally
cannot be found.

• Four is more subtle. (This is a recurring theme in low-dimensional
topology/geometry!)

The Square Peg Problem
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Early progress focused on smooth curves, i.e., where the curve is traced
out by an infinitely differentiable function f : S1 → R2. (This basically
means that, if you zoom in, the Jordan curve looks like the graph of a
smooth function over the x- or y -axis.)

For example:
• Emch (1913) solved the problem for smooth convex curves. (Proof
uses configuration spaces and homology.)

• Schnirelman (1929) solved it for any smooth Jordan curve.

It’s tempting to try to use this to resolve the Square Peg Problem for any
continuous Jordan curve:
Any such curve γ is the limit of smooth Jordan curves {γn}∞n=1 that provide
increasingly good approximations to γ. All these smooth curves γn contain
squares. But these sequences of squares may shrink to points!

The Square Peg Problem
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Theorem (Vaughan, 1977)

Every continuous Jordan curve contains four points forming the vertices
of some rectangle.

The clever proof uses surfaces in 3-dimensional space.

More progress
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Suppose x , y , z ,w ∈ γ are points forming the vertices of a rectangle R.

x

z

y

w

Observation

(1) the segments x − y and z − w , which are the diagonals of R, have
the same length (i.e. ‖x − y‖ = ‖z − w‖), and

(2) the midpoints (x + y)/2 and (z + w)/2 are the same.

Exercise: The conditions ‖x − y‖ = ‖z −w‖ and (x + y)/2 = (z +w)/2
are actually equivalent to x , y , z ,w ∈ γ being vertices of a rectangle.

Vaughan’s proof
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Define a function F : γ × γ → R3 by

F (x , y) =
(
(x + y)/2, ‖x − y‖

)
.

x

z

y

w

Note that γ× γ ≈ S1×S1 is a torus, and F sends it to R3
+ = R2×R≥0.

If x , y , z ,w ∈ γ form a rectangle as shown above, then F (x , y) = F (z ,w).
So if there’s a rectangle, this map is not injective. But actually F is never
injective anyway because F (x , y) = F (y , x)!

Vaughan’s proof
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Let’s fix this by considering the set M consist-
ing of unordered pairs of points {x , y} in γ.

This is a Mobius strip! The yellow boundary
curve corresponds to pairs {x , y} with y = x .

Since F (x , y) = F (y , x) =⇒ F induces a map f of the Mobius strip into
R3, i.e., f : M → R3

+ defined by f ({x , y}) =
(
x+y
2 , ‖x − y‖

)
.

Example:

R2

γ

R3
+

f (M)

Vaughan’s proof
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Observe that the boundary of M, denoted ∂M, is
sent directly to γ in R2 × {0} because ∂M consists
of unordered pairs of the form {x , x} and

f ({x , x}) =

(
x + x

2
, ‖x − x‖

)
= (x , 0).

In fact, f (M) ∩ (R2 × {0}) is exactly γ.

Key Claim
f : M → R3 is not injective.

Non-injectivity means there are points x , y , z ,w ∈ γ with {x , y} 6= {z ,w}
and f ({x , y}) = f ({z ,w}), i.e.,

x + y

2
=

z + w

2
and ‖x − y‖ = ‖z − w‖.

These points form the vertices of a rectangle. (Note that x , y , z ,w 6∈ ∂M.)

Vaughan’s proof
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Key Claim
f : M → R2 × R≥0 is not injective.

Proof sketch: For the sake of contradiction,
suppose that f is injective, i.e., f (M) is an
embedded Mobius strip in R3

+ = R2 × R≥0
with boundary f (∂M) = γ in R2 × 0.

R3
+

f (M)

Take the mirror −f (M) ⊂ R3
− and glue it

to f (M) ⊂ R3
+ along γ. This forms a Klein

bottle, and it is embedded in R3 (i.e., has no
self-intersections).

However, it is a famous old theorem in topol-
ogy that the Klein bottle cannot be embed-
ded in R3! �

Vaughan’s proof
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The Square Peg Problem is still open. More generally, we can ask:

The Rectangular Peg Problem (1911)

Given a Jordan curve γ and a rectangle R in the plane, does γ contain
four points forming the vertices of a rectangle similar to R?

γ
R

Theorem (Greene-Lobb, 2020)

Yes, if the Jordan curve is smooth!

The Rectangular Peg Problem
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View R2 as the complex plane C and define a map

F : γ × γ → C× C where F (x , y) =

(
x + y

2
,

(x − y)2

2
√
2 · ‖x − y‖

)
.

This induces a map from the Mobius strip into R4 = C× C.

For convenience, let M denote the image of the Mobius strip in C× C.

Observe that M ⊂ C× C intersects C× 0 in ∂M = γ × {0}.

M ⊂ C× C

C× {0}

Greene-Lobb’s proof

14/20 Kyle Hayden The Rectangular Peg Problem



WTS: γ inscribes a rectangle whose diagonals meet at angle θ ∈ (0, π/2].

Let Mθ be obtained from M by rotating the second factor of C× C by θ,
i.e., applying the transformation

rotθ : C× C→ C× C where (z ,w) 7→ (z , e iθw).

This rotation fixes ∂M = γ ⊂ C× {0}, so M and Mθ coincide along γ.

M

Mθ

Exercise
γ inscribes a rectangle
with aspect angle θ

⇐⇒ M and Mθ intersect away from γ

Greene-Lobb’s proof
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The strategy is to glue M and Mθ together along γ to form a Klein bottle.

But there’s a problem: Klein bottles do embed in R4! So we have to work
harder.

Fortunately, this isn’t any old Klein bottle. But to explain why it’s special,
we need to discuss symplectic geometry. . .

Greene-Lobb’s proof
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Interlude: Symplectic geometry
Consider a point-like object moving through R2, tracing out some path.
To understand its trajectory at any given moment, we need to know the
position (p1, p2) ∈ R2 and the momentum (q1, q2), viewed as a vector
“based at” (p1, p2) that is tangent to the path.

(p1, p2)

p1

p2

(q1, q2)

While the possibilities (p1, p2, q1, q2) form a 4-dimensional space R4, we
no longer treat all directions equally. (In particular, our point-like object
moving through R2 sweeps out a path in R4, but the physically realizable
paths in R4 are constrained!)

Symplectic geometry
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In the typical geometric perspective on R4, the most natural way to com-
pare two vectors ~u, ~v ∈ R4 is via their dot product ~u · ~v ∈ R.

In the setting of symplectic geometry, the dot product isn’t the most nat-
ural way to compare directions. Instead, there is a “symplectic form” ω
that eats vectors ~u, ~v ∈ R4 and spits out a number ω(~u, ~v) ∈ R.

Example: ω(~p1, ~q1) = 1 but ω(~p1, ~p1) = ω(~p1, ~p2) = ω(~p1, ~q2) = 0

Symplectic geometry
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Given a surface S (like a torus or a Klein bottle) in R4, we can look at a
point on S and consider the vectors tangent to S .

The most interesting surfaces in symplectic 4-space are Lagrangian sur-
faces, where ω(~u, ~v) = 0 for all vectors tangent to S at the same point.

These surfaces satisfy additional constraints.

Theorem (Shevchishin, Nemirovski 2007)

There is no smooth, embedded, Lagrangian Klein bottle in (R4, ω).

Symplectic geometry
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Back to our originally scheduled programming...

A direct analysis shows that the Klein bottle in R4 = C × C constructed
from γ using M and Mθ is Lagrangian.∗

∗Technically, it is not smooth along γ, but this can be fixed.

So if γ has no inscribed rectangles of aspect angle θ, then the Lagrangian
Klein bottle K = M ∪Mθ in R4 has no self-intersections. That contradicts
the Shevchishin-Nemirovski result. So we conclude that γ must contain
an inscribed rectangle of angle of the desired angle. �

Greene-Lobb’s proof
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