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Topology

Topology concerns the properties of objects/spaces that are preserved un-
der continuous deformations, such as stretching, twisting, crumpling and
bending, but not tearing or gluing.

A JGC

Also concerns the way that smaller objects can sit inside of bigger ones.
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Jordan curves

We call a continuous, closed, embedded loop in the plane a Jordan curve,
where embedded means no self-intersections.

3/20 Kyle Hayden The Rectangular Peg Problem



Inscribed squares

Early on, it was observed you can often find four points on a given Jordan
curve that form the vertices of a square in the plane. That is, many Jordan
curves have inscribed squares.
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The Square Peg Problem

In 1911, Otto Toeplitz posed the following question:

The Square Peg Problem

Does every continuous Jordan curve in the plane contain four points at
the vertices of a square?

Why squares?
e Three points correspond to inscribed triangles, and these are

ubiquitous: Given any triangle A and any Jordan curve v C R?,
there is an inscribed triangle on ~ that is similar to A.

e Five points correspond to inscribed pentagons, and these generally
cannot be found.

e Four is more subtle. (This is a recurring theme in low-dimensional
topology/geometry!)
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The Square Peg Problem

Early progress focused on smooth curves, i.e., where the curve is traced
out by an infinitely differentiable function f : S — R2. (This basically
means that, if you zoom in, the Jordan curve looks like the graph of a
smooth function over the x- or y-axis.)

For example:

e Emch (1913) solved the problem for smooth convex curves. (Proof
uses configuration spaces and homology.)

e Schnirelman (1929) solved it for any smooth Jordan curve.

It's tempting to try to use this to resolve the Square Peg Problem for any
continuous Jordan curve:
Any such curve 7 is the limit of smooth Jordan curves {,}%2, that provide

increasingly good approximations to +. All these smooth curves ~, contain
squares. But these sequences of squares may shrink to points!
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More progress

Every continuous Jordan curve contains four points forming the vertices
of some rectangle.

The clever proof uses surfaces in 3-dimensional space.
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Vaughan's proof

Suppose x, y,z, w € ~ are points forming the vertices of a rectangle R.

Observation

(1) the segments x — y and z — w, which are the diagonals of R, have
the same length (i.e. [[x — y|| = ||z — w]|), and

(2) the midpoints (x + y)/2 and (z + w)/2 are the same.

Exercise: The conditions ||x —y|| = [|z— w]| and (x +y)/2 = (z+w)/2
are actually equivalent to x,y,z, w € v being vertices of a rectangle.
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Vaughan's proof

Define a function F : v x v — R3 by

Flx,y) = ((x+¥)/2[Ix = yl).- - (

Note that v x v &~ S' x St is a torus, and F sends it to R3 = R? x Rx,.

If x,y,z, w € v form a rectangle as shown above, then F(x,y) = F(z, w).

So if there's a rectangle, this map is not injective. But actually F is never
injective anyway because F(x,y) = F(y, x)!
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Vaughan's proof

Let's fix this by considering the set M consist-
ing of unordered pairs of points {x,y} in 7.

This is a Mobius strip! The yellow boundary
curve corresponds to pairs {x, y} with y = x.

Since F(x,y) = F(y,x) = F induces a map f of the Mobius strip into
R3, ie., f: M — R3 defined by f({x,y}) = (33, |x = y|) -

Example:

R2
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Vaughan's proof

Observe that the boundary of M, denoted OM, is
sent directly to v in R? x {0} because OM consists
of unordered pairs of the form {x,x} and

() = (55 Ikl ) = (.0)

In fact, f(M) N (R? x {0}) is exactly ~.

Key Claim

f: M — R3 is not injective.

Non-injectivity means there are points x,y, z, w € v with {x,y} # {z, w}
and f({x,y}) = f({z,w}), ie,
x+y z+w
2 2

and |lx —yl[ = [lz = w]|.

These points form the vertices of a rectangle. (Note that x, y, z. w & OM.)
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Vaughan's proof

Key Claim

f: M — R2 x R is not injective.

Proof sketch: For the sake of contradiction,
suppose that f is injective, i.e., f(M) is an
embedded Mobius strip in R3 = R? x Rxg
with boundary f(OM) = v in R? x 0.

Take the mirror —f(M) C R3 and glue it
to f(M) C R? along ~. This forms a Klein
bottle, and it is embedded in R3 (i.e., has no
self-intersections).

However, it is a famous old theorem in topol-
ogy that the Klein bottle cannot be embed-
ded in R3! O
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The Rectangular Peg Problem

The Square Peg Problem is still open. More generally, we can ask:

Given a Jordan curve « and a rectangle R in the plane, does v contain
four points forming the vertices of a rectangle similar to R?

Yes, if the Jordan curve is smooth!
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Greene-Lobb's proof

View R? as the complex plane C and define a map

x+y (x—y) )
2 T2v2-x—y|

F:yx~y—=CxC where F(x,y):(

This induces a map from the Mobius strip into R* = C x C.
For convenience, let M denote the image of the Mobius strip in C x C.

Observe that M C C x C intersects C x 0 in M = v x {0}.
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Greene-Lobb's proof

WTS: v inscribes a rectangle whose diagonals meet at angle 6 € (0,7/2].

Let My be obtained from M by rotating the second factor of C x C by 6,
i.e., applying the transformation

rotg: Cx C — C x C where (z,w) (z,e"w).
This rotation fixes 9M = v C C x {0}, so M and My coincide along ~.

A /\/]9

Exercise

v inscribes a rectangle

with aspect angle 6 <= M and My intersect away from =y
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Greene-Lobb's proof

The strategy is to glue M and My together along + to form a Klein bottle.

But there’s a problem: Klein bottles do embed in R*! So we have to work
harder.

Fortunately, this isn't any old Klein bottle. But to explain why it's special,
we need to discuss symplectic geometry. ..
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Symplectic geometry

Interlude: Symplectic geometry

Consider a point-like object moving through R?, tracing out some path.
To understand its trajectory at any given moment, we need to know the
position (p1, p2) € R? and the momentum (q1,q2), viewed as a vector
“based at” (p1, p2) that is tangent to the path.

P2
A

(Pl,P2)

> P1

While the possibilities (p1, p2, g1, g2) form a 4-dimensional space R*, we
no longer treat all directions equally. (In particular, our point-like object
moving through R? sweeps out a path in R*, but the physically realizable
paths in R* are constrained!)
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Symplectic geometry

In the typical geometric perspective on R*, the most natural way to com-
pare two vectors i, V € R* is via their dot product - vV € R.

In the setting of symplectic geometry, the dot product isn't the most nat-

ural way to compare directions. Instead, there is a “symplectic form” w
that eats vectors i, Vv € R* and spits out a number w(#, V) € R.

Example: w(pi, 1) = 1 but w(py, p1) = w(pi, p2) = w(p1,G2) =0
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Symplectic geometry

Given a surface S (like a torus or a Klein bottle) in R*, we can look at a
point on S and consider the vectors tangent to S.

The most interesting surfaces in symplectic 4-space are Lagrangian sur-
faces, where w(i, V) = 0 for all vectors tangent to S at the same point.

These surfaces satisfy additional constraints.

There is no smooth, embedded, Lagrangian Klein bottle in (R*, w).
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Greene-Lobb's proof

Back to our originally scheduled programming...

A direct analysis shows that the Klein bottle in R* = C x C constructed
from 7 using M and Mj is Lagrangian.*

*Technically, it is not smooth along ~, but this can be fixed.

So if v has no inscribed rectangles of aspect angle 6, then the Lagrangian
Klein bottle K = MU M, in R* has no self-intersections. That contradicts
the Shevchishin-Nemirovski result. So we conclude that v must contain
an inscribed rectangle of angle of the desired angle. O

20/20 Kyle Hayden The Rectangular Peg Problem



